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by Morris Perlmutter

Lewis Research Center

SUMMARY

Solutions for the mass-flow profiles, density, static pressure, tempera-
ture, and wall shear distributions for a collisionless gas flowing through a
finite length flat-plate channel are given, and numerical values for particular
cases are calculated. The heat transfer between the channel walls and the en-
vironment are calculated for the rarefied gas heat transfer as well as for ra-
diant heat transfer. The results indicate that the rarefied gas heat transfer
can be significant compared with the thermal radiation for conditions similar
to those that occur in a thermionic converter.

INTRODUCTION

There is a growing interest in rarefied gas flow and heat transfer because
of the low-density environment that is being encountered in present-day tech-
nology. When the mean free path of the molecules is small compared with the
model dimensions, the fluid may be treated macroscopically and the classical
Navier-Stokes equations used. When the mean free path of the molecule 1s
large, however, these limiting equations no longer apply. These cases can be
treated by using the kinetic theory of gases. The limiting case treated by
kinetic theory, namely, that of very large mean free paths, which is called
free-molecule flow, 1s considered herein.

The problem of free-molecule-flow heat transfer between infinite plates
was treated by Knudsen, as discussed in reference 1. The problem of heat
transfer in an adiabatic tube and nozzle with free-molecule flow was treated in
references 2 and 3. The heat transfer to a nonconvex surface from a free-
molecule stream was treated in reference 4.

The model analyzed here consists of a flat-plate channel of finite length
and infinite depth with each plate isothermal at a different uniform tempera-
ture. The accommodation coefficients for both plates are assumed uniform and
equal. There are assumed to be no intermolecular collisions in the channel.
The channel connects two gas reservoirs, each reservoir fixed at a given tem-
perature and density. The mass transfer flow rate through the channel formed
by the plates is found by numerically integrating the exact integral equation.



The longitudinal and transverse flow distributions as well as the density and
wall shear distributions in the channel are given. (From these distributions,
the local pressure and temperature can be calculated.) The total energy leav-
ing the surface is calculated, and the net energy transferred between the sur-
faces and the enviromment is found. In addition, the thermal radiation heat
transfer is calculated for a similar model, and the heat transferred by radia-
tion is compared with that for free-molecule flow for a situation that might be
applicable to the analysis of heat transfer in thermionic energy converters.

SYMBOLS
cross-sectional areas of inlet and outlet, respectively
areas of lower and upper plate, respectively
heat éapacity at constant volume
energy per unit mass of molecular stream, [c, + (R/2)]T
energy flux leaving surface

total energy flux (emitted and reflected) leaving surface A at loca-
tion N

shape factor
mass-flow ratio, (m - mR)/(mL - mp)

number of molecules per unit volume having velocity V per unit ve-
locity interval

kernel, (see eq. (3))

mean free path

length of plates divided by distance between them

mass of molecule

molecular weight .

mass-flow rate per unit area (mass flux)

mass flux entering the channel from left reservoir, pL/Zﬂl/ZBL
average mass flux through channel from left to right reservoir
static pressure

total rate of heat loss from surface



1.987 cal
gas constant, 7
(°x) (&)

distance shown in fig. 1 (p. 5)

distance shown in fig. 1 (p. 5)

temperature

static temperature

average nontranslational internal energy of the molecule

mean velcecity

component of mean velocity in Xq- and Xo-directions, respectively

velocity of molecule

undirected component of velocity

space coordinates divided by distance between plates (see fig. 1(a),

pP- 5)
a position location
accommodation coefficient (emissivity)
1/(2rr) /2

angle shown in fig. 1 (p. 5) measured clockwise from normal to
surface

angles beginning of plate and to end of plate, respectively (see
fig. 1(a), p. 5)

coordinates on lower plate divided by distance between plates in
Xq - and x3—directions, respectively

coordinates on upper plate divided by distance between plates in
Xq- and x3—directions, respectively

density

density at standard conditions (273° K and 1 atm)
Stefan-Boltzmann constant, 1.36x10712 cal/(sec)(cm?)(%k%)
molecular diameter

shear stress



® subsolutions as given by egs. (30) to (34)

1
- 1
® 7-“/” ¢ dx

0

oF lflchdx

L 0
s angle from normal to element
Subscripts:
A-B from point A to point B
a contribution from enviromment above Xo
b contribution from environment below Xo
c convected heat transfer
i isothermal case, walls and reservoirs at same temperature
in incident
L left enviromment
A to right end of channel
o to left end of channel .
R right enviromment
r radiated heat transfer
t total leaving surface including reflected and emitted streams
W on wall surface
e in direction 6
A lower wall
I upper wall
Superscripts:

(M) mean, _/O‘°° ( )fv av

(A)lJ(A)g L - ( )1: 1 - ( )2
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ANALYSIS

The model analyzed consists of two parallel plates whose length divided by
the distance between them is 1. The plates are of infinite depth and are at
temperatures Tk and T , respectively. The left and right enviromments are

at temperatures TL and TR and densities o, and PR> respectively, as
shown in figure 1(a). The gas is in equilibrium in the left and right reser-

'
4
— 0]
5
X2 V
174 N —
XB/' Xl
O e - T\ / —

(a) Space element, (b) Wall element,

Vi "

Figure 1. - Analytical model.

voirs. The density of the gas is assumed to be sufficiently low everywhere so
that the mean free path of the molecules is large with respect to the distance
between the plates. In this model, therefore, the effect of intermolecular
collisions in the channel is small and may be neglected.

Mass Flux Leaving Walls

The total mass flux leaving the lower plate at a point having an Xq-
coordinate equal to Kl is denoted by m%l. This is equal to the mass flux

incident at that point. The flux incident (and leaving) the lower wall as de-
rived in the appendix (eq. (AS5)) is given by

n/2
/ m, d(sin o) (1)
o=-1/2

where mgy 1s the mass flux emitted from the surface element that is oriented
at angle 6 with respect to the normal from the point Ay on the lower plate
as shown in figure 1(b). TFor the present case, this becomes

6 6 /2
my, 0 L g g / .
m%l = = d(sin 8) + A - d(sin_0) + = d(sin 8) (2)
(6]

-n/2 6,

m-)\l =

vl B

where m;y and m are the mass fluxes entering the channel from the left and
right environments. If my, and my are equal to mg, then equation (2) shows
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that m%l equals mp.

fkl

or

0
74
i

M~ MR
ML~ MR

|

Mass-flow ratio at Aq, f
(SN
-

™~
—

™S
~

0 R

m -m 6 6
N TR O da(sin 6) |, L ¢ d(sin o) (38) -
- mL - mR - 6
-n/2 6

2

Hence, equation (2) may be written as

2
0

1
£ =F + T KA da 3b
7\1 dA7\l-L / Hy ( 12 Hl) Hq ( )

| I |
. Length of plates

divided by distance
between them,
4

™~
™~

R

1)

2 3
At

A

~
v

Figure 2. - Mass-flow ratio from surface.

H1=0

where FdAx and K(Aq,up)dpg are
1

given in the appendix by equations (A7)
and (A8). The solution to equation
(3b) was obtained by numerical integra-
tion and iteration. The results are
shown in figure 2 for various values

of 1, and table I gives numerical
values of f for Ay = 0. From the

symetry of the problem, f“l along the

upper plate has the same functional de-
pendence on |y as fxl has on Aq

or f“l = fxl . The function fxl
A=ty
satisfies the relation of f% +f, =1,
1N

where Xl =1 - N. This relation is
discussed in reference 2 and agrees

with the numerical results reported herein.

TABLE I. - VALUES OF MASS-FLOW RATIO

AT ENTRANCE OF CHANNEL

Length of plates
divided by distance
between them,

1
0.1
.5

1
2
5
10

20

[

of channel,
o

0.5249
.6132
.6883
L7701
.8627

.9141
. 9485
1.0

Mass-flow ratio
at entrance

Average Longitudinal Mass Flux

The average mass flux through the channel
can be found from

I
0

[
0



The first term on the right is the mass flux entering the channel at X7 = 0;
the second term is the mass flux leaving through the entrance (xl = 0) that

comes from both the upper and lower walls. The factor 2 that appears in the
second term takes account of the fact that, by symmetry, the mass flux leaving
the upper wall that goes through the inlet is equal to the amount leaving the
lower wall. The remaining terms give the mass flux leaving the inlet that en-
ters the right end and has no collision with the wall. Since it can be shown

that
1 1
0 1 0 1

equation (4) can be rewritten as

1
m.
L-R
% 1.2 FaFan _t AN (5)

The average mass flux through the channel is shown in figure 3. It can be seen
that

1.0%

] LT
s o Clausing’s solution
S .8 T ————— Present solution I
'§, | ———— Clausing’s limiting | __|
2 & % sofution; (VUIn 1
£& 6 A
2. \
B E & —
= T
% o 4 >\c
£ ) ?\0\\_0\\ H
[=* —_—
&
5 ]
>
<

0 2 4 6 8 10 12 14 16 18 20

Length of plates divided by distance between them, 1

Figure 3. - Average mass flux through channel.

. the average mass flux decreases for increasing lengths. Also shown in figure 3

is the approximate solution of Clausing (ref. 5), which was obtained by assum-
ing a linear form of fxl with an added correction factor. It can be seen

that Clausing's approximate solution is in good agreement with the exact solu-
tion obtained by use of equation (5).
Density Distribution in Channel

As shown in the appendix, the density at a point (xl,xz) is given Dby
equation (All)



2
o = " Poo ao (6)
.Y

where the angle ©6 1s again measured clockwise with respect to the normal to
the upper plate passing through the point (xl,xz).

The total contribution to p at (xl,xz) from that part of the enviromment
above x, 1s

6
Brmy,

-7 de + 7—/ ae + 7— Bgmg d6 (7)
L /2

The first two terms are the contributions to the densities from the right and
left reservoirs, and the remainder is the contribution from the upper wall. If
Brmr, = Brmg = Bgme, this equation reduces to the relation

= BRmRZﬂl 2/2 = pR/Z. For the isothermal case, where the walls and reser-
’ voirs are all at the same temperature, equation (7) may be written as

Py - = %
2n H / +/ fg a6 (8a)
LR /2 9%

since BL = BR = BQ. This can be readily generalized to the nonisothermal
case.

By symmetry the contribution from the environment below Xo is given by
the same relation except that x5, 1is replaced by 1 - x5, = §2; that is,

pb,1(%1,%2) = pp,1(x,%3) A (8b)
x2=%2
so that the total density is
PR PR
p-p - = - 5
PR 2] (2 (8¢)
°L " PR/;  \PL T PR °L T R
i i

If the reservoirs were reversed, then, in general, the density at the
point (Xl’XZ) under reversed conditions would be equal to the density at

(%q1,%5) before reversal or



D(ﬁl;xg) - OL} D(Xl;xg) - PR
Pr = Pr, i Py, = PR i

which can be rewritten as follows:

o(x),x;) - o p(X,%x,) - p
1 R| . 1272 Rl _, (9)
P1, = PR : P1, = PR 5

Thus the density values in the exit half of the channel may be found from the
density values in the entrance half.

A reasonable approximation for f, as can be seen from figure 2 (p. 6), is
a linear function of the x4-coordinate, in particular,

1- Zfo 1 - 2f, 1-2f
fe=fo+——l—'ul=fo+—l—xl+ 7

"N

Xo tan 6 (10)

Substituting equation (10) into equation (8a) and employing equations (8b) and
(80) give the following approximate result for the density:

p-p N X
2ﬁ<————¥5—> = tan'l EE + tan'l ;E

pL - pR i 1 1
1 - 2f X % x x
T \fy + —) Xq tan~t :L + tan~1 2y tan~t ;i + tan~t L
1-2fy | A ﬁ% + xg ﬁ% + xg
+ —— |Xo In| 55— |t X5 ln| 5—= (11)
21 2 4 22 %8 + x&
S 17%2

These results are plotted in figure 4 for values of x, from O to 1/2. (The
remaining values can be found from eq. (9).) The values of fy are given in
table I (p. 6).

Local Longitudinal Mass Flux

As shown in the appendix (eq. (A13)), the local mass flux through the
channel at point (x;,%5) is given by
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Figure 4. - Isothermal density distribution.

21 m
ouy = _/o. -2 sin 6 a6 (12)

The contribution to ouy at (xl,xz) arising from the enviromment above Xo 1s
8 n/2 6,
2(pul) = -mp / sin 6 a6 - mR/ sin 6 46 -/ m, sin 6 46 (13)
a
-1 /2 6, 6o

If m, = mg = mg, then (pul)a = 0 and equation (13) can be simplified to

2(puy) 6o 6,
r— =/ sin 6 40 +/ fy sin 6 a0 (14)
R L -ﬁ/Z 6

0

The contribution to pu; at (Xl,xz) arising from the enviromment below
Xo 1s given by equation (14) evaluated at %2 instead of x5, that is,

(pul)b(xl’xz)::(pul)a(xl’xz)|x2=§2’ and the total longitudinal mass flow is

given by puy = (puy) + (pul)b. Assuming the linear form of f given by
a
equation (10) and integrating give

10
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Wo-mg s 2 " 72 ¥ 7m  ~a\1/2
) < 2 2) / (Xz . Xz) /

2 1

X5 %o 1 - Zfo

+
2., 2\ /2 2 ~2)/2 21
2 T X7 Xo T X

2 a2\/2 . " 1/2
s *2 n 2 ~2 1/2 + X2 1n o 1/2 (153)
(Xl + X2> + Xl <.'X'.l + Xz) + Xl
These results are plotted in figure 5.
Length of plates divided b Note from equation
en of plates divided by
distance between them, — (l5a)t;}'lataz]3itcuives ??Z
L symmetric 1 = ;
2 2] 1 0,5 0.1,0, that is,
L
Ot 1 .] 0 e < Yy > < puy >
3’7 0 _ =
i YA MWy~ M My = Mp fA
3’2 L R/x L R/
o Ji1 i 1 1
X 42
(15D)

This can be seen from the
fact that the problem is

Z
L
5

RS
%V X
N

7é //¥7¢%_ symmetrical, so that, if the
////46 44j T2 / ,¢J | exit and entrance reservoirs
.4 . .6 .8 9 1.0 are reversed, the result is
puy
my - mg ! !
Figure 5, - Axial mass-flow profile, mR - m]'_, - mL - mR ~
X1 1

which is equal to equation (15b). The curves become less flat as the center of
the channel is approached. The curves are symmetric around Xx; = Z/Z and
Xs = 0.5

2 -

Local mass flux in transverse or xp-direction. - As shown in the appendix

(eq. (A16)), the flux in the transverse direction is

11



st mg
pu = -/ —- cos 6 de (16)
0

The contribution from the enviromment above Xo is given by
9 : /2 9,
2(pu2)a = -my, / cos 6 4o - mR/ cos @ 4e -/ mg cos 6 46 (17)
-n/2 ) %
If mg = my = mg, then (puz)&L = -mp and equation (17) reduces to

2(pu2)a + Zmg GO QZ
— = cos 6 d6 +f fy cos 6 d6 (18)
R L -n/2 90

The contribution to the transverse flow from the lower wall is by symmetry the
same as from the upper wall with x5, replaced by 1 - x, and with the sign
changed:

(Oug)b’xz = '(Dug)a,}?Z

Assuming the linear form for f (eq. (10)) and integrating give

. - M- - -0 - -

m. - m ~o\L/2 " fao  Ao\l/2 ~o\1/2 1/2
i R 2 2 2 2 2 2 2 2

, <Xl + X2> <Xl + XZ) (X2 + Xl) <x2 + Xl)

1-2f, | /. 1/2 /.. .o\1/2 1/2 \1/2
- 0 I:(xg + xi) - (x% + x%) - <x§ + x{) + (x% + X:?L> (19)

2

Notice that (puz)Xz = —(pu2>§c2 and also that (puz)Xl = —(puz)ﬁl. Some of

these results are shown in figure 6.

Shear stress along wall.- The shear stress on the lower wall in the Xq-

. . . . t 1 1 . .
direction is given by TX]_’XZ = —(leVZ)W, where Vl is the local undirected

component of molecule speed in the Xl-direction (i.e., V]'_ = V:L = Uy, where
/oo V]'_fv dv = 0) and Vé is the local undirected component of molecule speed
0

0]
in the x,-direction (i.e., V; = V, - uy, where dé: v, dv = 0).
Since the wup velocity is zero at the wall, the wall shear stress TXJ_’XZ

i1z
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Figure 6. - Radial mass-flow profile.

can be written '(leVZ)W' Then by equation (Al9),
+7 /2
— / "o .
(leV‘Z)W = m cos 6 sin 6 4@ (20)
o=-n/2 O

The contribution to the shear stress due to the molecules leaving the wall is
zero since they are reflected diffusely. For the isothermal case, this becomes

Bt/ 2oV v, % . ) _
—_—_— = cos Sin cOoSs sin
e g ae + fg cos 6 6 de (21)

my - m
L R w,i -n/2 o

which can be integrated to give

- ~2 2

leV2 1 1 - Zfo 7\1 7\1
ﬁ = - ———— fo +_Z—' 7\1 /\2 - 2
m_L_nE 7\l+1 7\l+1 7\l+1
o P

L "Rfg,1

1 - 2f N N A
+ _Z_Q tan~t Mo+ tan~t IS~ ES = 1 (22)
7\1 + 1 7\1 + 1

The results are shown in figure 7.

13



Local temperature and pressure in chan-

Length of plates divided by = - A a
distance between them, — nel. - The kinetic energy of the gas at a
t particular location due to an element
L0 %; dpl dp3 is given by
R 1
ST T1l.24
\ 2 pd—lJldlig;dV
| g b V=0
<; 6 e
l;y - Following the same procedure used before
COY 5. results in

P 7 2 5 2%,
0 .1 .2 3 .4 .5 pv— _ e
e 2 - 12 B as (23)
0

Figure 7. - Wall shear distribution,

The average kinetic energy of the gas can be expressed in terms of the local
static temperature by writing

2 : 2 2 2 2
V™ (V' +u)” _pv pu” _ pu
= = > =5+ %5 =35 Rl + = (24)

[©] SN

where the kinetic theory definition has been used for the local static temper-
ature Tg.

For the isothermal case, where walls and reservoirs are at temperature T,
equation (6) becomes
an 1/2
.//~ my ag = 217
B
0

Substituting this into equations (23) and (24) yields

or

T, =T - o= (25)

For a simple gas, SR/Z = Ccy and equation (25) becomes
2
u
T =T, +5— (26)

ZCV

The static pressure can readily be obtained from the static temperature by the
ideal gas law pg = PRT,.

14



1

Total energy leaving surface element. - The total energy per unit area
e\ leaving surface A at point Al is derived in the same manner as equa-

2
tion (27) in reference 2. The accommodation coefficient is defined as

e - e
ALt ( A t)-
a = ’ > in (27a)

m,_ E -
MM <e”1,t)in

where (ex ) is the total energy incident on the surface per unit area and
>¥in
ms E% is the energy flux that would be carried away from the surface if all
171

the incident molecules achieved thermal equilibrium with the wall. The energy
per unit mass of the stream leaving surface A that is in equilibrium with the
wall is shown in equation (A22) to be

R
E-)\ = <CV + -2->T-)\

The total energy flux leaving the lower surfaces at point A, 1s
2
e =m%@%+@.-a)%ﬁﬂhA Y oRERFaa gt e, K(Aq,nq)apq (27b)
1,t M M 0 1,t

where FEp, the energy per unit mass of the stream entering from the left reser-
voir, is equal to [c, + (R/2)ITy, and Ep is defined similarly for the right
reservoir. In equation (27b), it is assumed that the accommodation coeffi-
cient o is equal for both isothermal walls and all the molecules are leaving
the wall diffusely.

When mE%, my Br , and e“l . are equal to eg = upEp, equation (27b) shows
J
that exl,t = eg. Hence equation (27b) can be written

e-)\l’t - eR = CL(m'}\lE')\ - eR>

1
+ (1 - a)|(er, - ep)Fap, 1 * e - eg)k(N\upddy (28)
o
N 5 1,t

Similarly, for the upper wall,

15



eH]_ % - eg = or,(ml_llE“ - eR>

2
Z 14
+ (l - 0(,) (eL - eR)FdA -L +/ (e-)\ - eR>K(7\l,ul)d7\l (29)

Because of the linearity of the problem, the principle of superposition
can be used to reduce the problem into simpler parts that can be added together
for wvarious boundary conditions as follows:

"M, TR T [‘pl-LO\l)](eL - ep) [cPl’lA(M)] Fnm, = g

+ [‘Pl-lBO\l)] (mgEy - eg)

+ [o12a00)] By, - mg) + [p1-g800)] (mgBy, - ep)  (30)
iy T R T [o1-1u) ] (g, - er) + [pr-zalin) |Bp(my, - =)
+ [@1-213(“1)] (mgEy - eg)
+ [opaatuy) By, - mg) + [o11p(u1) | (mgE, - ep)  (31)
where
-
l
P _1,(M) = (1 - @){F'G_A?\l_l, +‘/O. [CPl_L(ul)]KO\]_;M]_)dHl}
and > (32)
onlm) = o100,
1 »
Then
1
paa) =ty + (1 - ) /O‘ (o120 KO\ g Yy (53)
1
o1-oany) = (1 - o) 'é 012400 KO g (550)

16




|

(Pl-lA< Hl) = CPl_lA(7\l)

Ap=Hy
and (33c)
P _oalby) = @1 2a(N)
1-2a(k7 1-2a M1 Ay
1
91-18(M) = o + (1 - a)-/{i [wl_gB(plj]K(Al,ul)dul (34a)
1
P1-2p(r) = (1 - ) /o‘ [@1_13(7\1)]K(7\1,u1)d%1 (34b)
o1 _1lky) = @ _qn(N) )
1-1B*M1 1-1BV 1 |W1*H1
and L (34c)
o1 _onlig) = @ (MI
1-28'H1 1-2B% "1 Aoy )

As shown, the functional dependence of the ¢ functions on py 1is the same as
the dependence on Al'

These subsolutions possess physical significance. If T“ and Tp are
equal to Ty, while the lower surface is at T, and if my = mg, that is, the

densities as well as the temperatures of the left and right enviromments are
equal, then the total energy leaving the lower surface is e7\l ‘ = eg
2

+ moE, - ep) and the energy leaving the upper surface is e e
91-1p(mgEy - ey vt R
+ wl-ZB(mREX - eR). The curves for ¢_1p and @y_pg are given in figure 8
for various values of 1. It can readily be seen that the limiting cases for
1 =0 are (Ql—lB)zao = o and (@1_23)190 = O, those for 1 = are
- a

1 .
($l-lB)Zﬁw = 5. o and (@l-ZB)zﬁm - The results are symmetrical around
x/1 = 0.5. 1In the limit as o - O, the solution reduces to P11 = @128 = 0,
while in the limiting case of a = 1, the solution reduces to ¢y_3g =1 and
®1-28 = O-

Similarly, if T% = TH = Tp, mp = mp, and T % TR’ the energy leaving
either surface is given by exl + =eg + wl—L(eL eR). These results are
2

. l-oa
0 is (@l-L)ZeO = =, for

1 - & s (#1.1),,, =0s for @ =1 is @5 =0, and for « =0 is the same

]

given in figure 9. The limiting solution for 1

17
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(a) Accommodation coefficient, a = 0.5.
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(b} Accommodation coefficient, a = 0.9.
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as equation (3) and is given in figure 2 (p. 6).
Finally, if TA = T =Tg and e = eR but my % mp, then the total en-
ergy leaving either surface is given by e% t--eR+(m.L mg ER(wl 1A+TPo ZA)

The results for ¢,_;5 and ¢q_s, are shown in figure 10. For 1 = O, the
solution reduces to @7_qp = % and @q_op = O.
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(a) Accommodation coefficient, a = 0.5. (b} Accommodation coefficient, a=0.9.
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Net Energy Leaving Surface

The average net rate at which energy leaves surface A per unit area of
gsurface is the difference between the rates of emitted and absorbed energy;
that is,

e = l - a e amy, _E 36

into equation (35) results in
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where the bar denotes the integrated average value. Similarly, the average net
heat flux leaving wall p is
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Net Energy From Enviromment

The net energy flux entering the channel through the left end is equal to
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which can be written.as

Q 1
L
AE = mLEL - mRER - / (e7\l N - eR>FdA-)\ -L d7\l
0 ’ 1
/ |
\
- e - epx)F du (42)
Ry7dA  -L 1
L2 ‘ ’ ' — which is equal to
L0 | +012AFX10 | qQr, '
L+ T | [ T—=e; -€ -<e -e)F _
P A/u/ﬂ/ﬁﬁxm E T ANS TR LTV
] ! 1
| 1 | J i
-4 i ‘ ‘_wl_lBF T - (e - e >F _ (4:3)
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RADTATTON HEAT TRANSFER

In most cases where the free-molecule flow is important, the thermal radi-
ation will also be important. The radiation problem involves equations similar
to those for the free-molecule flow. The model here is similar to the one
treated in reference 6, although the analysis of reference 6 did not include
the effects of the right and left environments.

From an energy balance, the total energy leaving point Al by radiation
for the present model is

1
=aey + (1 - a)leF 1 + enF n e K(A\q ,uq )du (45)
A 1fa, -I T Crfam -R [ by g Lo

In this case, exl £ is the total energy leaving point Ay by radiation, and

er, and eR for this case are equal to oT* and oTé, respectively. The

emissivity of the surfaces is given by o. Equation (45) can also be written
as

e - e, =ale, - e))
M,y o CR AT CR

1
+ (1 - a)| ey, - eR)FdA?\l—L +[ (eul)t - eR>K(xl’“1)d“1 (46)

A similar equation would apply for surface pu

e - e, =ale - ey)
R R
“l,t M

1
+ (1 - a)|(ep - ep)Fan 1, +/ <e7\ - eR>K(?\l,pl)d7\l (47)

Since this equation is linear, it can be reduced to simpler parts by super-
position

ey o~ OR=P1o18(Ma) (e - eg) Ty ap(My) (e - eg) +0yp (A ) (e - ep) (482)
J
and

hy,p R 91-zpluy)(en - ep) * @1 gp(i) (e, - ep) + @1p(i ) eg, - ep) (eso)

where the ¢'s are the same relations given in equations (32) and (34).
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The net heat radiated from wall A can be calculated similarly to the
free-molecule case to be

% .
AT = / (ex ) exl’t)dh (49)
0

which becomes

— =e, -e, - le -e (50)
The term exl N - eg 1s obtained by finding the integrated average value of
J

equation (48) by means of figure 11. Similarly, for the upper surface u,

Q1 - -
K-)E\ s = e“ - eR - (eul’t - eR> (51)

The energy entering from the left end is also obtained as before:

o, 1 1
— =er - ep - e - ep\F o7, ANy - <e - e )F 7, du
A ~°L " °R [ ( Nt R> aty, -1 M Z p1,g T °R)Faa, L

(52)
which can be written as
%' = eL - eR - <e7\ —eR)FdA -L - (e - eR>FdA -L (53)
A7, 1,t N M1,t by

Equation (44) can be used to find Q-

EXAMPLE

For purposes of illustration and to indicate the magnitude of the free-
molecule heat transfer, a sample calculation is carried out. Consider the case
where the left and right enviromments and one wall are at equal temperatures
and the densities of the left and right enviromments are equal while the other
wall is at temperature T\- This type of situation is similar to one that may
arise in a thermionic energy converter. For this case, the free-molecule heat
transfer from equations (30) and (38) is

(Ey - ER) —
C C
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Similarly, for radiation from equations (48) and (50)

afey - eg)
(%) ) [ P aeR} (1 - %1.18) (55)
s r

Dividing equation (54) by equation (55) yields

H,c 1-a amp (B - ER)J
PAS 56
QA,r [é(e% - eR)]r [ 1-a . (56)

The gas 1s assumed to be argon at a density of 1074 Py, Where pg 1s the den-
sity at standard conditions (273° K and 1 atm) and the plates are assumed to be
tungsten with plate 1 at 2000° K and plate 2 at 500° K. The wall emissivity is
taken equal to 0.3. Hence, the radiation factor on the right side of equa-

tion (56) is

1-a (sq cm)(sec)

—— = 0.107
- T4 _ T4 cal
A R T

In the evaluation of the convection factor of this equation, the accommodation
coefficient for the argon-tungsten combination is given in reference 7 as 0.85.

Also,
1/2
RT
- R - -3
mR = pR<ﬁ> = 2.296x10

g
(sq cm)(sec)

Since c = (3/2)R for argon, equation (22) is used to obtain
E, - By = 2R(T, - Tp) = 149 cal/g

Combining these results gives

Q
A€ g1

,r

which indicates that the free-molecule-flow heat transfer is not negligible for
conditions that might occur in a thermionic device. This ratic, however, will
depend strongly on the conditions chosen. For higher wall temperatures than
those chosen here the radiation heat transfer will increase because the radia-
tion depends on the temperature to the fourth power. TFor higher densities,

the free-molecule heat transfer will increase since it i1s directly proportional
to the density. At high densities, however, the present solutions are no
longer applicable because the mean free path will be small compared with the
channel width, and the effect of intermolecular collisions cannot be neglected.

The dimension of the channel for free-molecule flow to occur can be found
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if the mean free path of the gas molecule is known. For hard sphere molecules,
the mean free path L, 1is given by

L, 1

ST s 2
\/_Z'mnom

where o, 1is the molecular diameter. Table 1.6 of reference 7 gives for argon

p
-6 s
h} = 6.2x10 — cm
o]

For ps/p of 104, L, = 0.062 centimeter, which is large compared with the dis-
tances between the plates commonly used in thermionic energy converters.
Therefore, the assumption of this report that the effects of moclecular colli-
sions are negligible in thermionic converters appears reasonable.

CONCLUDING REMARKS

The present results give solutions for the density, mass flow, wall shear,
static temperature, and pressure distributions in a flat-plate channel with
free-molecule flow. Calculations are carried out to indicate values of these
flow characteristics for different conditions. Also found is the heat transfer
between the surfaces and the enviromment by free-molecule flow and by thermal
radiation for arbitrary combinations of temperatures. A comparison of the
radiation heat transfer with the free-molecule heat transfer in a sample case
that is similar to that existing in a thermionic converter shows that free-
molecule heat transfer can be significant when compared with radiative heat
transfer.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, August 24, 1864
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APPENDIX - MASS FLUX TRANSFER BETWEEN SURFACE ELEMENTS

The mass flux through an elemental area dA,: at some point x', which is
assumed to have a gas in a Maxwellian distribution behind it is given by My .
The mass flow from dA,: that is incident on an elemental area dA, due to
molecules in the speed range V to V + dV can be obtained from reference 1

in the following way (see fig. 1, p. 5):

4 3 2 2
am 1BV expl =BV )AV cos Yy dAxx
dA, dmgp ,_ga av = X ( XZ ) X cos V¥, dA, (A1)

S I

which can be rewritten as

_ 4 o3 62,72 '
dAX dmd_AX'_d_AX’dV = mXIZBXIV eXp< BX v )dV dFd_AXl-d.A_X dAX (AZ)

The term dFdAX,-dA is the same as the shape factors used in thermal radia-
X

tion. After equation (A2) is integrated over V from O to «, it becomes

Ay dmgp i-aa, = Px' Faa,-an, By

or (A3)

dmgp i-ah, = Pxt Fan-aa,
where use was made of the following reciprocal relation often used in radia-
tion:

cos VYyr cos Y, dA,r dAy

IFan ,-an, By = Fap _an , by = o2

Since m is independent of uz, the integration over uz can be carried out

and the shape factor evaluated for an infinite strip of width dp; on the
upper wall at point g to an elemental area in the lower channel wall dA%l'

r cos 6 rZ a6 duz
Figure 1 (p. 5) shows that cos W%l:=——_§___ and cos w“l dpy dpz = —
where s° = r® + pg. This gives
3 e d
T 3 d(sin 0)
d‘FdA?\ _dul = (COS o de) ra / T = > (A4)
1 —o0 5

This result is similar to that found in reference 8.
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The total mass flux incident on and therefore reflected from an elemental
ares dA%l is

J'[/Z m +oo

6 .

m7\l = / = d(SlIl 9) = / mulK(-)\l,}J-l)dHl (AS)
_3-[/2 : —00

where T1g is the mass flux emitted from a surface element that is oriented at
angle 6O with respect to the normal to the point A, on the lower plate as

s?own in figure 1(b). For uq <O, mul = my,, wvhile, for pp > 1, m“l = mR.
Since
Hq = A
sin 6 = L L 17z (46)
2
[(uy - 22 + 1]
then ’
K(%l,pl)dpl = - 3/2 (A7)
2[(uy - A2+ 1]
The exchange factor from the left reservoir to dA%l is given by
o
d(sin 0) _ 1|, M (48)

i - . }
aA, -L 2 2 173
. (5 + )

-ﬂ/Z

since in this case m, = my, a constant.
1

Local Density Distribution

If there are dpgp , dV/M molecules per unit volume in front of an ele-
2

mental area dA, at some point x that originate at an elemental area dAX.

at some point x' having speeds in the range V to V + dV, the flux through
dA, at velocity V 1is as follows (see fig. 1, p. 5):

dA, dmdAXI-dﬂ Jav =V cos V¥, dAy dpdAXr,dV (A9)
Setting equation (Al) equal to (A9) gives
2% im, V2 exp(-B}ZC:VZ)dV cos Yyt Abyr (410)
dp =
d_A,xl,dV T[Sz

If the previous expression is integrated over both V and the depth, the den-
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sity at point x in the channel may be expressed as

1 2n
p = m./o‘ Bgmg 46 (Alla)

Notice that the limits on the integral now extend over all angles, inasmuch as
a point within the channel (and not on a wall) receives molecules from the two
reservoirs and the two walls, and these particles all contribute to p. Since

g0 = tan'l[(pl - xl)/ﬁz] for the upper wall,

ae = 2 6p < 6 < 6, (A11b)

~

2
Xy + (- %)

A similar result holds true fo; the lower wall.

Local Longitudinal Flux

As in reference 1, the local mass flux through the channel is obtained by
multiplying the density component dpd a av by the component of molecular
Hq Gz,

velocity in the xl-direction to give

V(x, - pg)
1M
d =a 1 1
(eu1) gy apg,av Pap,du,,av 5

(3 - pp)dyy dug

3 (A12)

- 4 3 3 2 2>
= 4 V - vV v
B m eXp( B a cOos \lf s

Treating this expression as equation (Alla) was treated in the previous section

results in

2
mpl
pul = - T sin 6 46 (AJ.S)

0
~ ~oll/2
Since cos 6 =X / (%, - p )2 + %8 / , then, for the upper wall,
2 1 1 2
Xp(x - 1)dwy

2 Az]S/z

2|ty - w)? + 55

sin 6
- = ae =

(A14)
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Local Transverse Flux

The flux in the x or transverse direction is obtained by multiplying
the density component by the component of molecular velocity in the Xo=
direction. For the present model

Xo = 1
2
d(puz)duldps,dv = 3Py apg,av VT (A15)
which yields
2
mg A
pu2=-/ —- cos 6 de (A18)
@) .
) 5 Ap7L/2
Since sin 6 = pp - xl/[(“l - Xq)° + X5 , then, for the upper wall,
3\(2 du
cos 6 do - 2 1 (A17)
2 ~03/2
2[ku - x )%+ XZJ
1 1 2
Shear stress in Xp-direction along wall. - The shear stress in the Xq-

direction on the surface A due to the molecules having speeds in the range
V to V #+dV coming from the direction 6 from the elemental area dpl du3
is ¢

2
— v
-d(pV,V =d —= (A - A18
(p 1 B)Wduldp-B;dV pdusdul,dv S2 ( 1 p’l) ( )
This can be integrated to obtain
(5775) - (a19)
d(pV,V = cos O sin 6 46 A19
1°2 Wd“l Beﬂl72
Energy transfer between wall elements. - The energy of each molecule in
the stream from dA,. to dAy (assuming a Maxwellian distribution behind dAy s
corresponding to a temperature equal to Tyr = l/2RB§1, can be written as equal

to (1/2)MV2-+MUX| Wwhere MU, 1is the average nontranslational internal energy
of the molecule at temperature T, :. Combining the energy of each molecule
with equation (A2) results in

12 1
L _ 1 2
Ay dmap - X’dv<é v Ux‘> Ut Tzt Fang-an,, P (A20)
v X
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Since Uyr = [Cv - (S/Z)Q]TX:, equation (A20) becomes

m B dFdAX—dAxx da, = mx’é%r4-§>Tx’ QA ~dA_, da, (A21)

where Eygr, the total energy per unit mass of the molecular stream at x',
satisfies the relation

Byt = (cv + %)TX, (A22)
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